19 research outputs found

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    The Kinematics of Nearby Stars and Large-Scale Radial Motion in the Galaxy

    No full text

    Terrestrial catastrophism: Nemesis or galaxy?

    No full text

    Kapteyn and Statistical Astronomy

    No full text
    corecore